Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Edge-Semantic Learning Strategy for Layout Estimation in Indoor Environment (1901.00621v1)

Published 3 Jan 2019 in cs.CV

Abstract: Visual cognition of the indoor environment can benefit from the spatial layout estimation, which is to represent an indoor scene with a 2D box on a monocular image. In this paper, we propose to fully exploit the edge and semantic information of a room image for layout estimation. More specifically, we present an encoder-decoder network with shared encoder and two separate decoders, which are composed of multiple deconvolution (transposed convolution) layers, to jointly learn the edge maps and semantic labels of a room image. We combine these two network predictions in a scoring function to evaluate the quality of the layouts, which are generated by ray sampling and from a predefined layout pool. Guided by the scoring function, we apply a novel refinement strategy to further optimize the layout hypotheses. Experimental results show that the proposed network can yield accurate estimates of edge maps and semantic labels. By fully utilizing the two different types of labels, the proposed method achieves state-of-the-art layout estimation performance on benchmark datasets.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.