Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

A mesh-free method for interface problems using the deep learning approach (1901.00618v1)

Published 3 Jan 2019 in physics.comp-ph, cs.NA, and math.NA

Abstract: In this paper, we propose a mesh-free method to solve interface problems using the deep learning approach. Two interface problems are considered. The first one is an elliptic PDE with a discontinuous and high-contrast coefficient. While the second one is a linear elasticity equation with discontinuous stress tensor. In both cases, we formulate the PDEs into variational problems, which can be solved via the deep learning approach. To deal with the inhomogeneous boundary conditions, we use a shallow neuron network to approximate the boundary conditions. Instead of using an adaptive mesh refinement method or specially designed basis functions or numerical schemes to compute the PDE solutions, the proposed method has the advantages that it is easy to implement and mesh-free. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method for interface problems.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.