Emergent Mind

Adversarial Robustness May Be at Odds With Simplicity

(1901.00532)
Published Jan 2, 2019 in cs.LG , cs.CC , and stat.ML

Abstract

Current techniques in machine learning are so far are unable to learn classifiers that are robust to adversarial perturbations. However, they are able to learn non-robust classifiers with very high accuracy, even in the presence of random perturbations. Towards explaining this gap, we highlight the hypothesis that $\textit{robust classification may require more complex classifiers (i.e. more capacity) than standard classification.}$ In this note, we show that this hypothesis is indeed possible, by giving several theoretical examples of classification tasks and sets of "simple" classifiers for which: (1) There exists a simple classifier with high standard accuracy, and also high accuracy under random $\ell\infty$ noise. (2) Any simple classifier is not robust: it must have high adversarial loss with $\ell\infty$ perturbations. (3) Robust classification is possible, but only with more complex classifiers (exponentially more complex, in some examples). Moreover, $\textit{there is a quantitative trade-off between robustness and standard accuracy among simple classifiers.}$ This suggests an alternate explanation of this phenomenon, which appears in practice: the tradeoff may occur not because the classification task inherently requires such a tradeoff (as in [Tsipras-Santurkar-Engstrom-Turner-Madry `18]), but because the structure of our current classifiers imposes such a tradeoff.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.