Papers
Topics
Authors
Recent
2000 character limit reached

Flow Based Self-supervised Pixel Embedding for Image Segmentation (1901.00520v2)

Published 2 Jan 2019 in cs.CV

Abstract: We propose a new self-supervised approach to image feature learning from motion cue. This new approach leverages recent advances in deep learning in two directions: 1) the success of training deep neural network in estimating optical flow in real data using synthetic flow data; and 2) emerging work in learning image features from motion cues, such as optical flow. Building on these, we demonstrate that image features can be learned in self-supervision by first training an optical flow estimator with synthetic flow data, and then learning image features from the estimated flows in real motion data. We demonstrate and evaluate this approach on an image segmentation task. Using the learned image feature representation, the network performs significantly better than the ones trained from scratch in few-shot segmentation tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.