Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Real-Time EEG Classification via Coresets for BCI Applications (1901.00512v1)

Published 2 Jan 2019 in cs.DS, cs.LG, and eess.SP

Abstract: A brain-computer interface (BCI) based on the motor imagery (MI) paradigm translates one's motor intention into a control signal by classifying the Electroencephalogram (EEG) signal of different tasks. However, most existing systems either (i) use a high-quality algorithm to train the data off-line and run only classification in real-time, since the off-line algorithm is too slow, or (ii) use low-quality heuristics that are sufficiently fast for real-time training but introduces relatively large classification error. In this work, we propose a novel processing pipeline that allows real-time and parallel learning of EEG signals using high-quality but possibly inefficient algorithms. This is done by forging a link between BCI and core-sets, a technique that originated in computational geometry for handling streaming data via data summarization. We suggest an algorithm that maintains the representation such coreset tailored to handle the EEG signal which enables: (i) real time and continuous computation of the Common Spatial Pattern (CSP) feature extraction method on a coreset representation of the signal (instead on the signal itself) , (ii) improvement of the CSP algorithm efficiency with provable guarantees by applying CSP algorithm on the coreset, and (iii) real time addition of the data trials (EEG data windows) to the coreset. For simplicity, we focus on the CSP algorithm, which is a classic algorithm. Nevertheless, we expect that our coreset will be extended to other algorithms in future papers. In the experimental results we show that our system can indeed learn EEG signals in real-time for example a 64 channels setup with hundreds of time samples per second. Full open source is provided to reproduce the experiment and in the hope that it will be used and extended to more coresets and BCI applications in the future.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.