SGD Converges to Global Minimum in Deep Learning via Star-convex Path (1901.00451v1)
Abstract: Stochastic gradient descent (SGD) has been found to be surprisingly effective in training a variety of deep neural networks. However, there is still a lack of understanding on how and why SGD can train these complex networks towards a global minimum. In this study, we establish the convergence of SGD to a global minimum for nonconvex optimization problems that are commonly encountered in neural network training. Our argument exploits the following two important properties: 1) the training loss can achieve zero value (approximately), which has been widely observed in deep learning; 2) SGD follows a star-convex path, which is verified by various experiments in this paper. In such a context, our analysis shows that SGD, although has long been considered as a randomized algorithm, converges in an intrinsically deterministic manner to a global minimum.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.