Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural Clustering Processes (1901.00409v4)

Published 28 Dec 2018 in stat.ML and cs.LG

Abstract: Probabilistic clustering models (or equivalently, mixture models) are basic building blocks in countless statistical models and involve latent random variables over discrete spaces. For these models, posterior inference methods can be inaccurate and/or very slow. In this work we introduce deep network architectures trained with labeled samples from any generative model of clustered datasets. At test time, the networks generate approximate posterior samples of cluster labels for any new dataset of arbitrary size. We develop two complementary approaches to this task, requiring either O(N) or O(K) network forward passes per dataset, where N is the dataset size and K the number of clusters. Unlike previous approaches, our methods sample the labels of all the data points from a well-defined posterior, and can learn nonparametric Bayesian posteriors since they do not limit the number of mixture components. As a scientific application, we present a novel approach to neural spike sorting for high-density multielectrode arrays.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube