Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

General Subpopulation Framework and Taming the Conflict Inside Populations (1901.00266v1)

Published 2 Jan 2019 in cs.NE and cs.LG

Abstract: Structured evolutionary algorithms have been investigated for some time. However, they have been under-explored specially in the field of multi-objective optimization. Despite their good results, the use of complex dynamics and structures make their understanding and adoption rate low. Here, we propose the general subpopulation framework that has the capability of integrating optimization algorithms without restrictions as well as aid the design of structured algorithms. The proposed framework is capable of generalizing most of the structured evolutionary algorithms, such as cellular algorithms, island models, spatial predator-prey and restricted mating based algorithms under its formalization. Moreover, we propose two algorithms based on the general subpopulation framework, demonstrating that with the simple addition of a number of single-objective differential evolution algorithms for each objective the results improve greatly, even when the combined algorithms behave poorly when evaluated alone at the tests. Most importantly, the comparison between the subpopulation algorithms and their related panmictic algorithms suggests that the competition between different strategies inside one population can have deleterious consequences for an algorithm and reveal a strong benefit of using the subpopulation framework. The code for SAN, the proposed multi-objective algorithm which has the current best results in the hardest benchmark, is available at the following https://github.com/zweifel/zweifel

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube