Emergent Mind

Abstract

Strong worst-case performance bounds for episodic reinforcement learning exist but fortunately in practice RL algorithms perform much better than such bounds would predict. Algorithms and theory that provide strong problem-dependent bounds could help illuminate the key features of what makes a RL problem hard and reduce the barrier to using RL algorithms in practice. As a step towards this we derive an algorithm for finite horizon discrete MDPs and associated analysis that both yields state-of-the art worst-case regret bounds in the dominant terms and yields substantially tighter bounds if the RL environment has small environmental norm, which is a function of the variance of the next-state value functions. An important benefit of our algorithmic is that it does not require apriori knowledge of a bound on the environmental norm. As a result of our analysis, we also help address an open learning theory question~\cite{jiang2018open} about episodic MDPs with a constant upper-bound on the sum of rewards, providing a regret bound with no $H$-dependence in the leading term that scales a polynomial function of the number of episodes.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.