Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Complementary reinforcement learning towards explainable agents (1901.00188v2)

Published 1 Jan 2019 in cs.LG and stat.ML

Abstract: Reinforcement learning (RL) algorithms allow agents to learn skills and strategies to perform complex tasks without detailed instructions or expensive labelled training examples. That is, RL agents can learn, as we learn. Given the importance of learning in our intelligence, RL has been thought to be one of key components to general artificial intelligence, and recent breakthroughs in deep reinforcement learning suggest that neural networks (NN) are natural platforms for RL agents. However, despite the efficiency and versatility of NN-based RL agents, their decision-making remains incomprehensible, reducing their utilities. To deploy RL into a wider range of applications, it is imperative to develop explainable NN-based RL agents. Here, we propose a method to derive a secondary comprehensible agent from a NN-based RL agent, whose decision-makings are based on simple rules. Our empirical evaluation of this secondary agent's performance supports the possibility of building a comprehensible and transparent agent using a NN-based RL agent.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube