Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Realizing data features by deep nets (1901.00130v1)

Published 1 Jan 2019 in cs.LG and stat.ML

Abstract: This paper considers the power of deep neural networks (deep nets for short) in realizing data features. Based on refined covering number estimates, we find that, to realize some complex data features, deep nets can improve the performances of shallow neural networks (shallow nets for short) without requiring additional capacity costs. This verifies the advantage of deep nets in realizing complex features. On the other hand, to realize some simple data feature like the smoothness, we prove that, up to a logarithmic factor, the approximation rate of deep nets is asymptotically identical to that of shallow nets, provided that the depth is fixed. This exhibits a limitation of deep nets in realizing simple features.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.