Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Epipolar Geometry based Learning of Multi-view Depth and Ego-Motion from Monocular Sequences (1812.11922v3)

Published 23 Dec 2018 in cs.RO and cs.CV

Abstract: Deep approaches to predict monocular depth and ego-motion have grown in recent years due to their ability to produce dense depth from monocular images. The main idea behind them is to optimize the photometric consistency over image sequences by warping one view into another, similar to direct visual odometry methods. One major drawback is that these methods infer depth from a single view, which might not effectively capture the relation between pixels. Moreover, simply minimizing the photometric loss does not ensure proper pixel correspondences, which is a key factor for accurate depth and pose estimations. In contrast, we propose a 2-view depth network to infer the scene depth from consecutive frames, thereby learning inter-pixel relationships. To ensure better correspondences, thereby better geometric understanding, we propose incorporating epipolar constraints to make the learning more geometrically sound. We use the Essential matrix obtained using Nist'er's Five Point Algorithm, to enforce meaningful geometric constraints, rather than using it as training labels. This allows us to use lesser no. of trainable parameters compared to state-of-the-art methods. The proposed method results in better depth images and pose estimates, which capture the scene structure and motion in a better way. Such a geometrically constrained learning performs successfully even in cases where simply minimizing the photometric error would fail.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.