Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Partially Non-Recurrent Controllers for Memory-Augmented Neural Networks (1812.11485v1)

Published 30 Dec 2018 in cs.NE and cs.LG

Abstract: Memory-Augmented Neural Networks (MANNs) are a class of neural networks equipped with an external memory, and are reported to be effective for tasks requiring a large long-term memory and its selective use. The core module of a MANN is called a controller, which is usually implemented as a recurrent neural network (RNN) (e.g., LSTM) to enable the use of contextual information in controlling the other modules. However, such an RNN-based controller often allows a MANN to directly solve the given task by using the (small) internal memory of the controller, and prevents the MANN from making the best use of the external memory, thereby resulting in a suboptimally trained model. To address this problem, we present a novel type of RNN-based controller that is partially non-recurrent and avoids the direct use of its internal memory for solving the task, while keeping the ability of using contextual information in controlling the other modules. Our empirical experiments using Neural Turing Machines and Differentiable Neural Computers on the Toy and bAbI tasks demonstrate that the proposed controllers give substantially better results than standard RNN-based controllers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.