Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ORIGAMI: A Heterogeneous Split Architecture for In-Memory Acceleration of Learning (1812.11473v2)

Published 30 Dec 2018 in cs.LG and stat.ML

Abstract: Memory bandwidth bottleneck is a major challenges in processing ML algorithms. In-memory acceleration has potential to address this problem; however, it needs to address two challenges. First, in-memory accelerator should be general enough to support a large set of different ML algorithms. Second, it should be efficient enough to utilize bandwidth while meeting limited power and area budgets of logic layer of a 3D-stacked memory. We observe that previous work fails to simultaneously address both challenges. We propose ORIGAMI, a heterogeneous set of in-memory accelerators, to support compute demands of different ML algorithms, and also uses an off-the-shelf compute platform (e.g.,FPGA,GPU,TPU,etc.) to utilize bandwidth without violating strict area and power budgets. ORIGAMI offers a pattern-matching technique to identify similar computation patterns of ML algorithms and extracts a compute engine for each pattern. These compute engines constitute heterogeneous accelerators integrated on logic layer of a 3D-stacked memory. Combination of these compute engines can execute any type of ML algorithms. To utilize available bandwidth without violating area and power budgets of logic layer, ORIGAMI comes with a computation-splitting compiler that divides an ML algorithm between in-memory accelerators and an out-of-the-memory platform in a balanced way and with minimum inter-communications. Combination of pattern matching and split execution offers a new design point for acceleration of ML algorithms. Evaluation results across 12 popular ML algorithms show that ORIGAMI outperforms state-of-the-art accelerator with 3D-stacked memory in terms of performance and energy-delay product (EDP) by 1.5x and 29x (up to 1.6x and 31x), respectively. Furthermore, results are within a 1% margin of an ideal system that has unlimited compute resources on logic layer of a 3D-stacked memory.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube