EMMA: An Emotion-Aware Wellbeing Chatbot (1812.11423v2)
Abstract: The delivery of mental health interventions via ubiquitous devices has shown much promise. A conversational chatbot is a promising oracle for delivering appropriate just-in-time interventions. However, designing emotionally-aware agents, specially in this context, is under-explored. Furthermore, the feasibility of automating the delivery of just-in-time mHealth interventions via such an agent has not been fully studied. In this paper, we present the design and evaluation of EMMA (EMotion-Aware mHealth Agent) through a two-week long human-subject experiment with N=39 participants. EMMA provides emotionally appropriate micro-activities in an empathetic manner. We show that the system can be extended to detect a user's mood purely from smartphone sensor data. Our results show that our personalized machine learning model was perceived as likable via self-reports of emotion from users. Finally, we provide a set of guidelines for the design of emotion-aware bots for mHealth.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.