Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error estimates for a tree structure algorithm solving finite horizon control problems (1812.11194v3)

Published 28 Dec 2018 in math.NA, cs.NA, and math.OC

Abstract: In the Dynamic Programming approach to optimal control problems a crucial role is played by the value function that is characterized as the unique viscosity solution of a Hamilton-Jacobi-BeLLMan (HJB) equation. It is well known that this approach suffers of the "curse of dimensionality" and this limitation has reduced its practical in real world applications. Here we analyze a dynamic programming algorithm based on a tree structure. The tree is built by the time discrete dynamics avoiding in this way the use of a fixed space grid which is the bottleneck for high-dimensional problems, this also drops the projection on the grid in the approximation of the value function. We present some error estimates for a first order approximation based on the tree-structure algorithm. Moreover, we analyze a pruning technique for the tree to reduce the complexity and minimize the computational effort. Finally, we present some numerical tests.

Citations (11)

Summary

We haven't generated a summary for this paper yet.