Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Drug cell line interaction prediction (1812.11178v1)

Published 28 Dec 2018 in q-bio.QM, cs.LG, and stat.ML

Abstract: Understanding the phenotypic drug response on cancer cell lines plays a vital rule in anti-cancer drug discovery and re-purposing. The Genomics of Drug Sensitivity in Cancer (GDSC) database provides open data for researchers in phenotypic screening to test their models and methods. Previously, most research in these areas starts from the fingerprints or features of drugs, instead of their structures. In this paper, we introduce a model for phenotypic screening, which is called twin Convolutional Neural Network for drugs in SMILES format (tCNNS). tCNNS is comprised of CNN input channels for drugs in SMILES format and cancer cell lines respectively. Our model achieves $0.84$ for the coefficient of determinant($R2$) and $0.92$ for Pearson correlation($R_p$), which are significantly better than previous works\cite{ammad2014integrative,haider2015copula,menden2013machine}. Besides these statistical metrics, tCNNS also provides some insights into phenotypic screening.

Citations (109)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)