Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scalable GAM using sparse variational Gaussian processes (1812.11106v1)

Published 28 Dec 2018 in cs.LG and stat.ML

Abstract: Generalized additive models (GAMs) are a widely used class of models of interest to statisticians as they provide a flexible way to design interpretable models of data beyond linear models. We here propose a scalable and well-calibrated Bayesian treatment of GAMs using Gaussian processes (GPs) and leveraging recent advances in variational inference. We use sparse GPs to represent each component and exploit the additive structure of the model to efficiently represent a Gaussian a posteriori coupling between the components.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.