Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Coarse-to-fine Semantic Segmentation from Image-level Labels (1812.10885v1)

Published 28 Dec 2018 in cs.CV

Abstract: Deep neural network-based semantic segmentation generally requires large-scale cost extensive annotations for training to obtain better performance. To avoid pixel-wise segmentation annotations which are needed for most methods, recently some researchers attempted to use object-level labels (e.g. bounding boxes) or image-level labels (e.g. image categories). In this paper, we propose a novel recursive coarse-to-fine semantic segmentation framework based on only image-level category labels. For each image, an initial coarse mask is first generated by a convolutional neural network-based unsupervised foreground segmentation model and then is enhanced by a graph model. The enhanced coarse mask is fed to a fully convolutional neural network to be recursively refined. Unlike existing image-level label-based semantic segmentation methods which require to label all categories for images contain multiple types of objects, our framework only needs one label for each image and can handle images contains multi-category objects. With only trained on ImageNet, our framework achieves comparable performance on PASCAL VOC dataset as other image-level label-based state-of-the-arts of semantic segmentation. Furthermore, our framework can be easily extended to foreground object segmentation task and achieves comparable performance with the state-of-the-art supervised methods on the Internet Object dataset.

Citations (101)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.