Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uni-DUE Student Team: Tackling fact checking through decomposable attention neural network (1812.10814v1)

Published 27 Dec 2018 in cs.IR

Abstract: In this paper we present our system for the FEVER Challenge. The task of this challenge is to verify claims by extracting information from Wikipedia. Our system has two parts. In the first part it performs a search for candidate sentences by treating the claims as query. In the second part it filters out noise from these candidates and uses the remaining ones to decide whether they support or refute or entail not enough information to verify the claim. We show that this system achieves a FEVER score of 0.3927 on the FEVER shared task development data set which is a 25.5% improvement over the baseline score.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)