Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Item-based Collaborative Filtering for Sparse Implicit Feedback (1812.10546v1)

Published 26 Dec 2018 in cs.IR

Abstract: Recommender systems are ubiquitous in the domain of e-commerce, used to improve the user experience and to market inventory, thereby increasing revenue for the site. Techniques such as item-based collaborative filtering are used to model users' behavioral interactions with items and make recommendations from items that have similar behavioral patterns. However, there are challenges when applying these techniques on extremely sparse and volatile datasets. On some e-commerce sites, such as eBay, the volatile inventory and minimal structured information about items make it very difficult to aggregate user interactions with an item. In this work, we describe a novel deep learning-based method to address the challenges. We propose an objective function that optimizes a similarity measure between binary implicit feedback vectors between two items. We demonstrate formally and empirically that a model trained to optimize this function estimates the log of the cosine similarity between the feedback vectors. We also propose a neural network architecture optimized on this objective. We present the results of experiments comparing the output of the neural network with traditional item-based collaborative filtering models on an implicit-feedback dataset, as well as results of experiments comparing different neural network architectures on user purchase behavior on eBay. Finally, we discuss the results of an A/B test that show marked improvement of the proposed technique over eBay's existing collaborative filtering recommender system.

Citations (3)

Summary

We haven't generated a summary for this paper yet.