Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Performance Bounds For Co-/Sparse Box Constrained Signal Recovery (1812.10471v1)

Published 23 Dec 2018 in math.OC, cs.IT, cs.NA, eess.SP, and math.IT

Abstract: The recovery of structured signals from a few linear measurements is a central point in both compressed sensing (CS) and discrete tomography. In CS the signal structure is described by means of a low complexity model e.g. co-/sparsity. The CS theory shows that any signal/image can be undersampled at a rate dependent on its intrinsic complexity. Moreover, in such undersampling regimes, the signal can be recovered by sparsity promoting convex regularization like $\ell_1$- or total variation (TV-) minimization. Precise relations between many low complexity measures and the sufficient number of random measurements are known for many sparsity promoting norms. However, a precise estimate of the undersampling rate for the TV seminorm is still lacking. We address this issue by: a) providing dual certificates testing uniqueness of a given cosparse signal with bounded signal values, b) approximating the undersampling rates via the statistical dimension of the TV descent cone and c) showing empirically that the provided rates also hold for tomographic measurements.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube