Papers
Topics
Authors
Recent
2000 character limit reached

Performance Bounds For Co-/Sparse Box Constrained Signal Recovery (1812.10471v1)

Published 23 Dec 2018 in math.OC, cs.IT, cs.NA, eess.SP, and math.IT

Abstract: The recovery of structured signals from a few linear measurements is a central point in both compressed sensing (CS) and discrete tomography. In CS the signal structure is described by means of a low complexity model e.g. co-/sparsity. The CS theory shows that any signal/image can be undersampled at a rate dependent on its intrinsic complexity. Moreover, in such undersampling regimes, the signal can be recovered by sparsity promoting convex regularization like $\ell_1$- or total variation (TV-) minimization. Precise relations between many low complexity measures and the sufficient number of random measurements are known for many sparsity promoting norms. However, a precise estimate of the undersampling rate for the TV seminorm is still lacking. We address this issue by: a) providing dual certificates testing uniqueness of a given cosparse signal with bounded signal values, b) approximating the undersampling rates via the statistical dimension of the TV descent cone and c) showing empirically that the provided rates also hold for tomographic measurements.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.