Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalization Bounds for Uniformly Stable Algorithms (1812.09859v2)

Published 24 Dec 2018 in cs.LG, cs.DS, and stat.ML

Abstract: Uniform stability of a learning algorithm is a classical notion of algorithmic stability introduced to derive high-probability bounds on the generalization error (Bousquet and Elisseeff, 2002). Specifically, for a loss function with range bounded in $[0,1]$, the generalization error of a $\gamma$-uniformly stable learning algorithm on $n$ samples is known to be within $O((\gamma +1/n) \sqrt{n \log(1/\delta)})$ of the empirical error with probability at least $1-\delta$. Unfortunately, this bound does not lead to meaningful generalization bounds in many common settings where $\gamma \geq 1/\sqrt{n}$. At the same time the bound is known to be tight only when $\gamma = O(1/n)$. We substantially improve generalization bounds for uniformly stable algorithms without making any additional assumptions. First, we show that the bound in this setting is $O(\sqrt{(\gamma + 1/n) \log(1/\delta)})$ with probability at least $1-\delta$. In addition, we prove a tight bound of $O(\gamma2 + 1/n)$ on the second moment of the estimation error. The best previous bound on the second moment is $O(\gamma + 1/n)$. Our proofs are based on new analysis techniques and our results imply substantially stronger generalization guarantees for several well-studied algorithms.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube