Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalization Bounds for Uniformly Stable Algorithms (1812.09859v2)

Published 24 Dec 2018 in cs.LG, cs.DS, and stat.ML

Abstract: Uniform stability of a learning algorithm is a classical notion of algorithmic stability introduced to derive high-probability bounds on the generalization error (Bousquet and Elisseeff, 2002). Specifically, for a loss function with range bounded in $[0,1]$, the generalization error of a $\gamma$-uniformly stable learning algorithm on $n$ samples is known to be within $O((\gamma +1/n) \sqrt{n \log(1/\delta)})$ of the empirical error with probability at least $1-\delta$. Unfortunately, this bound does not lead to meaningful generalization bounds in many common settings where $\gamma \geq 1/\sqrt{n}$. At the same time the bound is known to be tight only when $\gamma = O(1/n)$. We substantially improve generalization bounds for uniformly stable algorithms without making any additional assumptions. First, we show that the bound in this setting is $O(\sqrt{(\gamma + 1/n) \log(1/\delta)})$ with probability at least $1-\delta$. In addition, we prove a tight bound of $O(\gamma2 + 1/n)$ on the second moment of the estimation error. The best previous bound on the second moment is $O(\gamma + 1/n)$. Our proofs are based on new analysis techniques and our results imply substantially stronger generalization guarantees for several well-studied algorithms.

Citations (85)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.