Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Robust Filtering of Sampled-Data Dynamical Systems (1812.09701v1)

Published 23 Dec 2018 in cs.SY, cs.LG, and math.OC

Abstract: This work is concerned with robust filtering of nonlinear sampled-data systems with and without exact discrete-time models. A linear matrix inequality (LMI) based approach is proposed for the design of robust $H_{\infty}$ observers for a class of Lipschitz nonlinear systems. Two type of systems are considered, Lipschitz nonlinear discrete-time systems and Lipschitz nonlinear sampled-data systems with Euler approximate discrete-time models. Observer convergence when the exact discrete-time model of the system is available is shown. Then, practical convergence of the proposed observer is proved using the Euler approximate discrete-time model. As an additional feature, maximizing the admissible Lipschitz constant, the solution of the proposed LMI optimization problem guaranties robustness against some nonlinear uncertainty. The robust H_infty observer synthesis problem is solved for both cases. The maximum disturbance attenuation level is achieved through LMI optimization. At the end, a path to extending the results to higher-order approximate discretizations is provided.

Summary

We haven't generated a summary for this paper yet.