Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scene Graph Reasoning with Prior Visual Relationship for Visual Question Answering (1812.09681v2)

Published 23 Dec 2018 in cs.MM, cs.AI, and cs.CV

Abstract: One of the key issues of Visual Question Answering (VQA) is to reason with semantic clues in the visual content under the guidance of the question, how to model relational semantics still remains as a great challenge. To fully capture visual semantics, we propose to reason over a structured visual representation - scene graph, with embedded objects and inter-object relationships. This shows great benefit over vanilla vector representations and implicit visual relationship learning. Based on existing visual relationship models, we propose a visual relationship encoder that projects visual relationships into a learned deep semantic space constrained by visual context and language priors. Upon the constructed graph, we propose a Scene Graph Convolutional Network (SceneGCN) to jointly reason the object properties and relational semantics for the correct answer. We demonstrate the model's effectiveness and interpretability on the challenging GQA dataset and the classical VQA 2.0 dataset, remarkably achieving state-of-the-art 54.56% accuracy on GQA compared to the existing best model.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.