Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Estimation and Restoration of Compositional Degradation Using Convolutional Neural Networks (1812.09629v1)

Published 23 Dec 2018 in cs.CV

Abstract: Image restoration from a single image degradation type, such as blurring, hazing, random noise, and compression has been investigated for decades. However, image degradations in practice are often a mixture of several types of degradation. Such compositional degradations complicate restoration because they require the differentiation of different degradation types and levels. In this paper, we propose a convolutional neural network (CNN) model for estimating the degradation properties of a given degraded image. Furthermore, we introduce an image restoration CNN model that adopts the estimated degradation properties as its input. Experimental results show that the proposed degradation estimation model can successfully infer the degradation properties of compositionally degraded images. The proposed restoration model can restore degraded images by exploiting the estimated degradation properties and can achieve both blind and nonblind image restorations.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.