Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Meta Architecture Search (1812.09584v2)

Published 22 Dec 2018 in cs.LG and stat.ML

Abstract: Neural Architecture Search (NAS) has been quite successful in constructing state-of-the-art models on a variety of tasks. Unfortunately, the computational cost can make it difficult to scale. In this paper, we make the first attempt to study Meta Architecture Search which aims at learning a task-agnostic representation that can be used to speed up the process of architecture search on a large number of tasks. We propose the Bayesian Meta Architecture SEarch (BASE) framework which takes advantage of a Bayesian formulation of the architecture search problem to learn over an entire set of tasks simultaneously. We show that on Imagenet classification, we can find a model that achieves 25.7% top-1 error and 8.1% top-5 error by adapting the architecture in less than an hour from an 8 GPU days pretrained meta-network. By learning a good prior for NAS, our method dramatically decreases the required computation cost while achieving comparable performance to current state-of-the-art methods - even finding competitive models for unseen datasets with very quick adaptation. We believe our framework will open up new possibilities for efficient and massively scalable architecture search research across multiple tasks.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.