Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Escape Room: A Configurable Testbed for Hierarchical Reinforcement Learning (1812.09521v1)

Published 22 Dec 2018 in cs.AI

Abstract: Recent successes in Reinforcement Learning have encouraged a fast-growing network of RL researchers and a number of breakthroughs in RL research. As the RL community and the body of RL work grows, so does the need for widely applicable benchmarks that can fairly and effectively evaluate a variety of RL algorithms. This need is particularly apparent in the realm of Hierarchical Reinforcement Learning (HRL). While many existing test domains may exhibit hierarchical action or state structures, modern RL algorithms still exhibit great difficulty in solving domains that necessitate hierarchical modeling and action planning, even when such domains are seemingly trivial. These difficulties highlight both the need for more focus on HRL algorithms themselves, and the need for new testbeds that will encourage and validate HRL research. Existing HRL testbeds exhibit a Goldilocks problem; they are often either too simple (e.g. Taxi) or too complex (e.g. Montezuma's Revenge from the Arcade Learning Environment). In this paper we present the Escape Room Domain (ERD), a new flexible, scalable, and fully implemented testing domain for HRL that bridges the "moderate complexity" gap left behind by existing alternatives. ERD is open-source and freely available through GitHub, and conforms to widely-used public testing interfaces for simple integration and testing with a variety of public RL agent implementations. We show that the ERD presents a suite of challenges with scalable difficulty to provide a smooth learning gradient from Taxi to the Arcade Learning Environment.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.