Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Learning from Web Data: the Benefit of Unsupervised Object Localization (1812.09232v1)

Published 21 Dec 2018 in cs.CV

Abstract: Annotating a large number of training images is very time-consuming. In this background, this paper focuses on learning from easy-to-acquire web data and utilizes the learned model for fine-grained image classification in labeled datasets. Currently, the performance gain from training with web data is incremental, like a common saying "better than nothing, but not by much". Conventionally, the community looks to correcting the noisy web labels to select informative samples. In this work, we first systematically study the built-in gap between the web and standard datasets, i.e. different data distributions between the two kinds of data. Then, in addition to using web labels, we present an unsupervised object localization method, which provides critical insights into the object density and scale in web images. Specifically, we design two constraints on web data to substantially reduce the difference of data distributions for the web and standard datasets. First, we present a method to control the scale, localization and number of objects in the detected region. Second, we propose to select the regions containing objects that are consistent with the web tag. Based on the two constraints, we are able to process web images to reduce the gap, and the processed web data is used to better assist the standard dataset to train CNNs. Experiments on several fine-grained image classification datasets confirm that our method performs favorably against the state-of-the-art methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.