Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ecological Data Analysis Based on Machine Learning Algorithms (1812.09138v1)

Published 21 Dec 2018 in stat.ML and cs.LG

Abstract: Classification is an important supervised machine learning method, which is necessary and challenging issue for ecological research. It offers a way to classify a dataset into subsets that share common patterns. Notably, there are many classification algorithms to choose from, each making certain assumptions about the data and about how classification should be formed. In this paper, we applied eight machine learning classification algorithms such as Decision Trees, Random Forest, Artificial Neural Network, Support Vector Machine, Linear Discriminant Analysis, k-nearest neighbors, Logistic Regression and Naive Bayes on ecological data. The goal of this study is to compare different machine learning classification algorithms in ecological dataset. In this analysis we have checked the accuracy test among the algorithms. In our study we conclude that Linear Discriminant Analysis and k-nearest neighbors are the best methods among all other methods

Citations (2)

Summary

We haven't generated a summary for this paper yet.