Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Primal path algorithm for compositional data analysis (1812.08954v1)

Published 21 Dec 2018 in cs.LG and stat.ML

Abstract: Compositional data have two unique characteristics compared to typical multivariate data: the observed values are nonnegative and their summand is exactly one. To reflect these characteristics, a specific regularized regression model with linear constraints is commonly used. However, linear constraints incur additional computational time, which becomes severe in high-dimensional cases. As such, we propose an efficient solution path algorithm for a $l_1$ regularized regression with compositional data. The algorithm is then extended to a classification model with compositional predictors. We also compare its computational speed with that of previously developed algorithms and apply the proposed algorithm to analyze human gut microbiome data.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.