Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

What are the biases in my word embedding? (1812.08769v4)

Published 20 Dec 2018 in cs.CL and cs.LG

Abstract: This paper presents an algorithm for enumerating biases in word embeddings. The algorithm exposes a large number of offensive associations related to sensitive features such as race and gender on publicly available embeddings, including a supposedly "debiased" embedding. These biases are concerning in light of the widespread use of word embeddings. The associations are identified by geometric patterns in word embeddings that run parallel between people's names and common lower-case tokens. The algorithm is highly unsupervised: it does not even require the sensitive features to be pre-specified. This is desirable because: (a) many forms of discrimination--such as racial discrimination--are linked to social constructs that may vary depending on the context, rather than to categories with fixed definitions; and (b) it makes it easier to identify biases against intersectional groups, which depend on combinations of sensitive features. The inputs to our algorithm are a list of target tokens, e.g. names, and a word embedding. It outputs a number of Word Embedding Association Tests (WEATs) that capture various biases present in the data. We illustrate the utility of our approach on publicly available word embeddings and lists of names, and evaluate its output using crowdsourcing. We also show how removing names may not remove potential proxy bias.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.