Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

One-Class Feature Learning Using Intra-Class Splitting (1812.08468v5)

Published 20 Dec 2018 in cs.LG, cs.CV, and stat.ML

Abstract: This paper proposes a novel generic one-class feature learning method based on intra-class splitting. In one-class classification, feature learning is challenging, because only samples of one class are available during training. Hence, state-of-the-art methods require reference multi-class datasets to pretrain feature extractors. In contrast, the proposed method realizes feature learning by splitting the given normal class into typical and atypical normal samples. By introducing closeness loss and dispersion loss, an intra-class joint training procedure between the two subsets after splitting enables the extraction of valuable features for one-class classification. Various experiments on three well-known image classification datasets demonstrate the effectiveness of our method which outperformed other baseline models in average.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.