Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancing Robustness of Deep Neural Networks Against Adversarial Malware Samples: Principles, Framework, and AICS'2019 Challenge (1812.08108v3)

Published 19 Dec 2018 in cs.CR

Abstract: Malware continues to be a major cyber threat, despite the tremendous effort that has been made to combat them. The number of malware in the wild steadily increases over time, meaning that we must resort to automated defense techniques. This naturally calls for machine learning based malware detection. However, machine learning is known to be vulnerable to adversarial evasion attacks that manipulate a small number of features to make classifiers wrongly recognize a malware sample as a benign one. The state-of-the-art is that there are no effective countermeasures against these attacks. Inspired by the AICS'2019 Challenge, we systematize a number of principles for enhancing the robustness of neural networks against adversarial malware evasion attacks. Some of these principles have been scattered in the literature, but others are proposed in this paper for the first time. Under the guidance of these principles, we propose a framework and an accompanying training algorithm, which are then applied to the AICS'2019 challenge. Our experimental results have been submitted to the challenge organizer for evaluation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.