Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Review of Meta-Reinforcement Learning for Deep Neural Networks Architecture Search (1812.07995v1)

Published 17 Dec 2018 in cs.LG and cs.AI

Abstract: Deep Neural networks are efficient and flexible models that perform well for a variety of tasks such as image, speech recognition and natural language understanding. In particular, convolutional neural networks (CNN) generate a keen interest among researchers in computer vision and more specifically in classification tasks. CNN architecture and related hyperparameters are generally correlated to the nature of the processed task as the network extracts complex and relevant characteristics allowing the optimal convergence. Designing such architectures requires significant human expertise, substantial computation time and doesn't always lead to the optimal network. Model configuration topic has been extensively studied in machine learning without leading to a standard automatic method. This survey focuses on reviewing and discussing the current progress in automating CNN architecture search.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.