Papers
Topics
Authors
Recent
2000 character limit reached

Matrix Completion under Low-Rank Missing Mechanism (1812.07813v2)

Published 19 Dec 2018 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: Matrix completion is a modern missing data problem where both the missing structure and the underlying parameter are high dimensional. Although missing structure is a key component to any missing data problems, existing matrix completion methods often assume a simple uniform missing mechanism. In this work, we study matrix completion from corrupted data under a novel low-rank missing mechanism. The probability matrix of observation is estimated via a high dimensional low-rank matrix estimation procedure, and further used to complete the target matrix via inverse probabilities weighting. Due to both high dimensional and extreme (i.e., very small) nature of the true probability matrix, the effect of inverse probability weighting requires careful study. We derive optimal asymptotic convergence rates of the proposed estimators for both the observation probabilities and the target matrix.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.