Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Discriminative Supervised Hashing for Cross-Modal similarity Search (1812.07660v3)

Published 6 Dec 2018 in cs.LG, cs.CV, and cs.MM

Abstract: With the advantage of low storage cost and high retrieval efficiency, hashing techniques have recently been an emerging topic in cross-modal similarity search. As multiple modal data reflect similar semantic content, many researches aim at learning unified binary codes. However, discriminative hashing features learned by these methods are not adequate. This results in lower accuracy and robustness. We propose a novel hashing learning framework which jointly performs classifier learning, subspace learning and matrix factorization to preserve class-specific semantic content, termed Discriminative Supervised Hashing (DSH), to learn the discrimative unified binary codes for multi-modal data. Besides, reducing the loss of information and preserving the non-linear structure of data, DSH non-linearly projects different modalities into the common space in which the similarity among heterogeneous data points can be measured. Extensive experiments conducted on the three publicly available datasets demonstrate that the framework proposed in this paper outperforms several state-of -the-art methods.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.