Orbit Expandability of Automaton Semigroups and Groups (1812.07359v2)
Abstract: We introduce the notion of expandability in the context of automaton semigroups and groups: a word is k-expandable if one can append a suffix to it such that the size of the orbit under the action of the automaton increases by at least k. This definition is motivated by the question which {\omega}-words admit infinite orbits: for such a word, every prefix is expandable. In this paper, we show that, on input of a word u, an automaton T and a number k, it is decidable to check whether u is k-expandable with respect to the action of T. In fact, this can be done in exponential nondeterministic space. From this nondeterministic algorithm, we obtain a bound on the length of a potential orbit-increasing suffix x. Moreover, we investigate the situation if the automaton is invertible and generates a group. In this case, we give an algebraic characterization for the expandability of a word based on its shifted stabilizer. We also give a more efficient algorithm to decide expandability of a word in the case of automaton groups, which allows us to improve the upper bound on the maximal orbit-increasing suffix length. Then, we investigate the situation for reversible (and complete) automata and obtain that every word is expandable with respect to these automata. Finally, we give a lower bound example for the length of an orbit-increasing suffix.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.