Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Constrained speaker diarization of TV series based on visual patterns (1812.07209v2)

Published 18 Dec 2018 in cs.MM and cs.CL

Abstract: Speaker diarization, usually denoted as the ''who spoke when'' task, turns out to be particularly challenging when applied to fictional films, where many characters talk in various acoustic conditions (background music, sound effects...). Despite this acoustic variability , such movies exhibit specific visual patterns in the dialogue scenes. In this paper, we introduce a two-step method to achieve speaker diarization in TV series: a speaker diarization is first performed locally in the scenes detected as dialogues; then, the hypothesized local speakers are merged in a second agglomerative clustering process, with the constraint that speakers locally hypothesized to be distinct must not be assigned to the same cluster. The performances of our approach are compared to those obtained by standard speaker diarization tools applied to the same data.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.