Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis (1812.07050v2)

Published 11 Dec 2018 in cs.CV

Abstract: Point cloud based place recognition is still an open issue due to the difficulty in extracting local features from the raw 3D point cloud and generating the global descriptor, and it's even harder in the large-scale dynamic environments. In this paper, we develop a novel deep neural network, named LPD-Net (Large-scale Place Description Network), which can extract discriminative and generalizable global descriptors from the raw 3D point cloud. Two modules, the adaptive local feature extraction module and the graph-based neighborhood aggregation module, are proposed, which contribute to extract the local structures and reveal the spatial distribution of local features in the large-scale point cloud, with an end-to-end manner. We implement the proposed global descriptor in solving point cloud based retrieval tasks to achieve the large-scale place recognition. Comparison results show that our LPD-Net is much better than PointNetVLAD and reaches the state-of-the-art. We also compare our LPD-Net with the vision-based solutions to show the robustness of our approach to different weather and light conditions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.