Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep learning incorporating biologically-inspired neural dynamics (1812.07040v2)

Published 17 Dec 2018 in cs.NE

Abstract: Neural networks have become the key technology of artificial intelligence and have contributed to breakthroughs in several machine learning tasks, primarily owing to advances in deep learning applied to Artificial Neural Networks (ANNs). Simultaneously, Spiking Neural Networks (SNNs) incorporating biologically-feasible spiking neurons have held great promise because of their rich temporal dynamics and high-power efficiency. However, the developments in SNNs were proceeding separately from those in ANNs, effectively limiting the adoption of deep learning research insights. Here we show an alternative perspective on the spiking neuron that casts it as a particular ANN construct called Spiking Neural Unit (SNU), and a soft SNU (sSNU) variant that generalizes its dynamics to a novel recurrent ANN unit. SNUs bridge the biologically-inspired SNNs with ANNs and provide a methodology for seamless inclusion of spiking neurons in deep learning architectures. Furthermore, SNU enables highly-efficient in-memory acceleration of SNNs trained with backpropagation through time, implemented with the hardware in-the-loop. We apply SNUs to tasks ranging from hand-written digit recognition, language modelling, to music prediction. We obtain accuracy comparable to, or better than, that of state-of-the-art ANNs, and we experimentally verify the efficacy of the in-memory-based SNN realization for the music-prediction task using 52,800 phase-change memory devices. The new generation of neural units introduced in this paper incorporate biologically-inspired neural dynamics in deep learning. In addition, they provide a systematic methodology for training neuromorphic computing hardware. Thus, they open a new avenue for a widespread adoption of SNNs in practical applications.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.