Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks (1812.06570v3)

Published 17 Dec 2018 in cs.CV

Abstract: Deep neural networks (DNNs) have been enormously successful across a variety of prediction tasks. However, recent research shows that DNNs are particularly vulnerable to adversarial attacks, which poses a serious threat to their applications in security-sensitive systems. In this paper, we propose a simple yet effective defense algorithm Defense-VAE that uses variational autoencoder (VAE) to purge adversarial perturbations from contaminated images. The proposed method is generic and can defend white-box and black-box attacks without the need of retraining the original CNN classifiers, and can further strengthen the defense by retraining CNN or end-to-end finetuning the whole pipeline. In addition, the proposed method is very efficient compared to the optimization-based alternatives, such as Defense-GAN, since no iterative optimization is needed for online prediction. Extensive experiments on MNIST, Fashion-MNIST, CelebA and CIFAR-10 demonstrate the superior defense accuracy of Defense-VAE compared to Defense-GAN, while being 50x faster than the latter. This makes Defense-VAE widely deployable in real-time security-sensitive systems. Our source code can be found at https://github.com/lxuniverse/defense-vae.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)