Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Robust Deep Learning Approach for Automatic Classification of Seizures Against Non-seizures (1812.06562v2)

Published 17 Dec 2018 in cs.LG, q-bio.NC, and stat.ML

Abstract: Identifying epileptic seizures through analysis of the electroencephalography (EEG) signal becomes a standard method for the diagnosis of epilepsy. Manual seizure identification on EEG by trained neurologists is time-consuming, labor-intensive and error-prone, and a reliable automatic seizure/non-seizure classification method is needed. One of the challenges in automatic seizure/non-seizure classification is that seizure morphologies exhibit considerable variabilities. In order to capture essential seizure patterns, this paper leverages an attention mechanism and a bidirectional long short-term memory (BiLSTM) to exploit both spatial and temporal discriminating features and overcome seizure variabilities. The attention mechanism is to capture spatial features according to the contributions of different brain regions to seizures. The BiLSTM is to extract discriminating temporal features in the forward and the backward directions. Cross-validation experiments and cross-patient experiments over the noisy data of CHB-MIT are performed to evaluate our proposed approach. The obtained average sensitivity of 87.00%, specificity of 88.60% and precision of 88.63% in cross-validation experiments are higher than using the current state-of-the-art methods, and the standard deviations of our approach are lower. The evaluation results of cross-patient experiments indicate that, our approach has better performance compared with the current state-of-the-art methods and is more robust across patients.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.