Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Robust Human Activity Recognition from RGB Video Stream with Limited Labeled Data (1812.06544v1)

Published 16 Dec 2018 in cs.CV, cs.AI, and cs.LG

Abstract: Human activity recognition based on video streams has received numerous attentions in recent years. Due to lack of depth information, RGB video based activity recognition performs poorly compared to RGB-D video based solutions. On the other hand, acquiring depth information, inertia etc. is costly and requires special equipment, whereas RGB video streams are available in ordinary cameras. Hence, our goal is to investigate whether similar or even higher accuracy can be achieved with RGB-only modality. In this regard, we propose a novel framework that couples skeleton data extracted from RGB video and deep Bidirectional Long Short Term Memory (BLSTM) model for activity recognition. A big challenge of training such a deep network is the limited training data, and exploring RGB-only stream significantly exaggerates the difficulty. We therefore propose a set of algorithmic techniques to train this model effectively, e.g., data augmentation, dynamic frame dropout and gradient injection. The experiments demonstrate that our RGB-only solution surpasses the state-of-the-art approaches that all exploit RGB-D video streams by a notable margin. This makes our solution widely deployable with ordinary cameras.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Krishanu Sarker (3 papers)
  2. Mohamed Masoud (4 papers)
  3. Saeid Belkasim (4 papers)
  4. Shihao Ji (41 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.