Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

InverSynth: Deep Estimation of Synthesizer Parameter Configurations from Audio Signals (1812.06349v2)

Published 15 Dec 2018 in cs.SD, eess.AS, and stat.ML

Abstract: Sound synthesis is a complex field that requires domain expertise. Manual tuning of synthesizer parameters to match a specific sound can be an exhaustive task, even for experienced sound engineers. In this paper, we introduce InverSynth - an automatic method for synthesizer parameters tuning to match a given input sound. InverSynth is based on strided convolutional neural networks and is capable of inferring the synthesizer parameters configuration from the input spectrogram and even from the raw audio. The effectiveness InverSynth is demonstrated on a subtractive synthesizer with four frequency modulated oscillators, envelope generator and a gater effect. We present extensive quantitative and qualitative results that showcase the superiority InverSynth over several baselines. Furthermore, we show that the network depth is an important factor that contributes to the prediction accuracy.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.