Papers
Topics
Authors
Recent
2000 character limit reached

Semi-Supervised Monaural Singing Voice Separation With a Masking Network Trained on Synthetic Mixtures

Published 14 Dec 2018 in cs.SD, cs.LG, eess.AS, and stat.ML | (1812.06087v3)

Abstract: We study the problem of semi-supervised singing voice separation, in which the training data contains a set of samples of mixed music (singing and instrumental) and an unmatched set of instrumental music. Our solution employs a single mapping function g, which, applied to a mixed sample, recovers the underlying instrumental music, and, applied to an instrumental sample, returns the same sample. The network g is trained using purely instrumental samples, as well as on synthetic mixed samples that are created by mixing reconstructed singing voices with random instrumental samples. Our results indicate that we are on a par with or better than fully supervised methods, which are also provided with training samples of unmixed singing voices, and are better than other recent semi-supervised methods.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.