Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The PowerURV algorithm for computing rank-revealing full factorizations (1812.06007v1)

Published 14 Dec 2018 in math.NA and cs.NA

Abstract: Many applications in scientific computing and data science require the computation of a rank-revealing factorization of a large matrix. In many of these instances the classical algorithms for computing the singular value decomposition are prohibitively computationally expensive. The randomized singular value decomposition can often be helpful, but is not effective unless the numerical rank of the matrix is substantially smaller than the dimensions of the matrix. We introduce a new randomized algorithm for producing rank-revealing factorizations based on existing work by Demmel, Dumitriu and Holtz [Numerische Mathematik, 108(1), 2007] that excels in this regime. The method is exceptionally easy to implement, and results in close-to optimal low-rank approximations to a given matrix. The vast majority of floating point operations are executed in level-3 BLAS, which leads to high computational speeds. The performance of the method is illustrated via several numerical experiments that directly compare it to alternative techniques such as the column pivoted QR factorization, or the QLP method by Stewart.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.