Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Submodular Minimization over Networks: a Greedy Column Generation Approach (1812.05974v1)

Published 14 Dec 2018 in cs.SY, cs.DC, cs.MA, and math.OC

Abstract: Submodular optimization is a special class of combinatorial optimization arising in several machine learning problems, but also in cooperative control of complex systems. In this paper, we consider agents in an asynchronous, unreliable and time-varying directed network that aim at cooperatively solving submodular minimization problems in a fully distributed way. The challenge is that the (submodular) objective set-function is only partially known by agents, that is, each one is able to evaluate the function only for subsets including itself. We propose a distributed algorithm based on a proper linear programming reformulation of the combinatorial problem. Our algorithm builds on a column generation approach in which each agent maintains a local candidate basis and locally generates columns with a suitable greedy inner routine. A key interesting feature of the proposed algorithm is that the pricing problem, which involves an exponential number of constraints, is solved by the agents through a polynomial time greedy algorithm. We prove that the proposed distributed algorithm converges in finite time to an optimal solution of the submodular minimization problem and we corroborate the theoretical results by performing numerical computations on instances of the $s$--$t$ minimum graph cut problem.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.