Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 68 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 187 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations (1812.05967v2)

Published 14 Dec 2018 in math.NA and cs.NA

Abstract: In this article, we are interested in the asymptotic analysis of a finite volume scheme for one dimensional linear kinetic equations, with either Fokker-Planck or linearized BGK collision operator. Thanks to appropriate uniform estimates, we establish that the proposed scheme is Asymptotic-Preserving in the diffusive limit. Moreover, we adapt to the discrete framework the hypocoercivity method proposed by [J. Dolbeault, C. Mouhot and C. Schmeiser, Trans. Amer. Math. Soc., 367, 6 (2015)] to prove the exponential return to equilibrium of the approximate solution. We obtain decay rates that are bounded uniformly in the diffusive limit. Finally, we present an efficient implementation of the proposed numerical schemes, and perform numerous numerical simulations assessing their accuracy and efficiency in capturing the correct asymptotic behaviors of the models.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.