Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expected Emergence of Algorithmic Information from a Lower Bound for Stationary Prevalence (1812.05912v1)

Published 13 Dec 2018 in cs.SI and physics.soc-ph

Abstract: We study emergent information in populations of randomly generated networked computable systems that follow a Susceptible-Infected-Susceptible contagion (or infection) model of imitation of the fittest neighbor. These networks have a scale-free degree distribution in the form of a power-law following the Barab\'{a}si-Albert model. We show that there is a lower bound for the stationary prevalence (or average density of infected nodes) that triggers an unlimited increase of the expected emergent algorithmic complexity (or information) of a node as the population size grows.

Citations (1)

Summary

We haven't generated a summary for this paper yet.