Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Expected Emergence of Algorithmic Information from a Lower Bound for Stationary Prevalence (1812.05912v1)

Published 13 Dec 2018 in cs.SI and physics.soc-ph

Abstract: We study emergent information in populations of randomly generated networked computable systems that follow a Susceptible-Infected-Susceptible contagion (or infection) model of imitation of the fittest neighbor. These networks have a scale-free degree distribution in the form of a power-law following the Barab\'{a}si-Albert model. We show that there is a lower bound for the stationary prevalence (or average density of infected nodes) that triggers an unlimited increase of the expected emergent algorithmic complexity (or information) of a node as the population size grows.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.