Papers
Topics
Authors
Recent
2000 character limit reached

Expected Emergence of Algorithmic Information from a Lower Bound for Stationary Prevalence

Published 13 Dec 2018 in cs.SI and physics.soc-ph | (1812.05912v1)

Abstract: We study emergent information in populations of randomly generated networked computable systems that follow a Susceptible-Infected-Susceptible contagion (or infection) model of imitation of the fittest neighbor. These networks have a scale-free degree distribution in the form of a power-law following the Barab\'{a}si-Albert model. We show that there is a lower bound for the stationary prevalence (or average density of infected nodes) that triggers an unlimited increase of the expected emergent algorithmic complexity (or information) of a node as the population size grows.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.